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We perform a group analysis of the equations of magnetohydrodynamics. As distinct from [1, 2], the group
properties of the equations of motion of a compressible fluid are considered under the assumption of finite conductivity.
Possible invariant solutions are found for the set of MHD equations in the one-dimensional case. We give examples of
analytic and numerical solutions of the problem of conducting gas flow interaction with a magnetic field.

The set of equations describing the nonstationary flow of an electrically conducting gas in a magnetic field in the
hydrodynamic approximation (displacement currents are neglected throughout) is
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The conductivity o, thermal conductivity A, and gas viscosity coefficients 1 and £ are functions of p and the
density p:

c=ap ", A=bp%%, p=dpfp®  E=[p%*. (1)

Let us consider the group properties of the system S; of differential equations under condition (1) in three-
dimensional space in which the velocity vector v has components vy, vz, and vy and the magnetic field strength vector
h has components hy, hy, and hs. As is well known, the transformation group G of the system of differential equations
is completely defined by the Lie algebra of its infinitesimal operators. Using familiar methods [3] we find that the Lie
algebra of the fundamental group of system S; under condition (1) is generated by the following linearly independent
operators:
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In the case in which only molecular heat conduction is present (¥ = ¢, w = g), further extension of the group
occurs when n # —m; to the operators (2) we add
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When 2m = —n, we add to these last two operators
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When n = —~m, the operators X, X;, and X¢ do not apply, and we add to (2) the operator
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If we are considering radiative heat transfer, where the conditions ¢ = ¢, w = g do not hold, the operators X,—X;
are only applicable for the system of equations S, in which the viscosity terms are discounted. If we discount the heat
conduction terms in system S; but retain the viscosity terms, the operators X,—X¢ again hold, except that we have to
replace w and ¥ by g and ¢, respectively, in the expressions for a.

If we consider the movement of a nonviscous electrically conducting gas and disregard the heat conduction,
further extension of the Lie algebra of the fundamental group of system S; occurs provided that ¢ = ap™p'. To the
operators {2)—(5), in which we set ¢ equal to zero, we add:

when n # —m,
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when v = 2 and 2m = —n,
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Let us consider in more detail the case of uniform movement of a nonviscous electrically conducting gas in a
magnetic field. We neglect heat conduction, and denote by 3, the system of equations describing this flow. We assume
that n = —m. This means that, under the above assumptions, the gas conductivity is given as a function of temperature
by o= aT™, Under our assumptions the system S, is invariant with respect to the operators
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These operators apply in the case of plane flows. For axisymmetric flows a contraction of the group occurs and
only the three linearly independent operators X;, X,, and X5 remain. A knowledge of the fundamental group (9) enables
the invariant solutions of system Sy to be found. Invariant solutions of unit rank are only possible for S, in single-
parameter subgroups. Utilizing the internal automorphisms of the transformation group G, we can obtain an optimum
system of single-parameter subgroups, whence all the essentially distinct solutions of system S, can be found.

We omit the intermediate steps and present only the final expressions for the optimum system of single-
parameter subgroups:

Xy -+ BXg X5+ BXy, Xo+ BXy, Xg-+ BXy Xy + X5+ BX,, (10)

where 3 is an arbitrary constant.
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Using the optimum subgroups (10}, we obtain the corresponding eésentially distinct invariant solutions.
1. Subgroup H; with operator X; + fX,;. The invariant H;-solution is
= V(2), p= P (a), p = 0 (2); h=e"D (2).
2. The subgroup H, with operator X; + 8X,. The invariant Hy-solution can be written as
2=V ), p=oF VM pa) o=2foq),
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3. The subgroup Hz with operator X, + 8X,. The invariant Hs-solution is
v=V (), p=2e®EP (1), p = ®EG(1), h = F5D ().
4. The subgroup H, with operator X3 + 8X,. The invariant H,-solution is
v=z/t-+ V()), p="P ), p =BG, b= P (),
5. The subgroup H; with operator X; + X3 + 5X;. The invariant Hy-solution may be written as
v=1t+ V@A), p=2ePP M), 0=cPO0), =DM, A=2z—1/22,

The functions V, P, 0, and ¢ satisfy, respectively, the systems of ordinary differential equations obtained by
direct substitution of the expressions for v, p, p, and h into S,. Numerical methods may be used for finding the
solutions of these systems of equations. However, if the magnetic pressure is proportional to the static gas pressure,
an analytic solution of the problem may easily be found in the subgroups H; and Hy.

The invariant Hz-solution, with m = 3/2, is
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The constants C;, Cy, and Cyz are found from the initial conditions.

In conclusion, let us use our invariant H;-solution to consider the radial flow of a gas of finite conductivity in a
longitudinal magnetic field. We take a combination of an infinite cylindrical source of electrically conducting gas of
radius R, and a sink of radius Ry >Ry, and consider the gas movement in the magnetic field of an infinite solenoid of
radius Ry. In view of the form of the Hy-solution, we get the time dependence I = IRt for the current in the solenoid.
In addition, we assume that, when r = Ry, the conductivity o tends to infinity, i.e., the electric field strength
vanishes.

Substituting the expressions for v, p, p, and h from the Hi~solution into Sy, we get a system of equations in the
functions V(r), P(r), 6(r), and &(r):
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The boundary conditions are
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Here 6 is the number of turns per unit length of the solencid. The fourth condition is obtained from Ohm’s law.
We have thus obtained a boundary value problem for the system (13) under conditions (14).

To maintain the specified currentI = Ioeth in the solenoid, a suitable emf E must be included in the electrical
circuit containing the solenoid. This emf is found from the equation

R,
E = I;Q® 1 21B36e% S r® (r)dr,
Ry

of the electrical circuit, where £ is the circuit resistance.

The problem was solved on a computer, taking m = 3/2. The results confirm the formation of a high-
temperature electrically conducting layer, as indicated in [4,5]. The formation of this high-temperature layer is

accompanied by a sharp braking of the gas in this zone: see Fig. 1, where the following notation is used for the
dimengsionless quantities:

v T __ 2n8%? o
vy = T1=T—o’ == A ry = i3

Here, vy, Ty, py, and [y are the characteristic values of the velocity, temperature, pressure, and current.
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Fig. 1
The author thanks S. S. Katsnel'son for valuable advice.
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